Vol. 1, Issue 2, July-Dec, 2025 Page No.: 41-51

#### Review

### Phytochemicals as Epigenetic Modulators in Cancer Therapy

### Mukesh Kumar<sup>1</sup>, Subham Mandal<sup>2</sup>, Suraj Mandal<sup>\*3</sup>

<sup>1,2</sup>Department of Pharmacy, IIMT College of Medical Sciences, IIMT University, O-Pocket, Ganganagar, Meerut, 250001, U.P., India

<sup>3</sup>Sujata Research Laboratories, Vill. Mataiyalalpur, Post- Ramnagra, Dist-Pilibhit, 262122, U.P., India

### Corresponding Author:

Suraj Mandal

#### Email:

sk8006721807@gmail.com

DOI: 10.62896/ijmsi.1.2.05

Conflict of interest: NIL

#### **Article History**

Received: 05/07/2025 Accepted: 28/08/2025 Published: 20/09/2025

#### **Abstract:**

Phytochemicals, the bioactive compounds found in plants, have garnered significant attention for their potential role in cancer prevention and therapy. Emerging evidence suggests that these natural compounds can modulate epigenetic mechanisms, which play a critical role in gene expression regulation, chromatin remodeling, and cell differentiation. By influencing epigenetic modifications such as DNA methylation, histone modification, and non-coding RNA expression, phytochemicals can potentially reverse aberrant epigenetic changes that drive cancer initiation and progression. This paper explores the diverse classes of phytochemicals, including flavonoids, polyphenols, terpenoids, and alkaloids, and their mechanisms of action as epigenetic modulators in cancer cells. Additionally, we discuss the challenges and opportunities for integrating phytochemicals into current cancer therapy regimens, highlighting the need for further research to understand their therapeutic potential and clinical applicability. Ultimately, the incorporation of epigenetic-modulating phytochemicals could offer a novel, non-toxic adjunct to conventional cancer treatments, with the promise of improved patient outcomes and reduced side effects.

**Keywords:** Phytochemicals, Epigenetics, Cancer Therapy, DNA Methylation, Histone Modification, Flavonoids, Polyphenols, Terpenoids, Epigenetic Modulators, Cancer Prevention.

This is an Open Access article that uses a funding model which does not charge readers or their institutions for access and distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0) and the Budapest Open Access Initiative (http://www.budapestopenaccessinitiative.org/read), which permit unrestricted use, distribution, and reproduction in any medium, provided original work is properly credited.

#### 1.1 Introduction:

Cancer is one of the leading causes of morbidity and mortality worldwide, with its development being driven by a complex interplay of genetic mutations, environmental factors, and epigenetic modifications. Traditional cancer therapies, including chemotherapy, radiation, and surgery, often come with severe side effects and limited efficacy, prompting the need for alternative or complementary approaches. Over the past few decades, research has increasingly focused on the potential of natural compounds, particularly phytochemicals, in cancer prevention and treatment. Phytochemicals are a diverse group of bioactive compounds found in plants, which have been shown to possess antioxidant, anti-inflammatory, and anticancer properties.(1)

Beyond their direct biological activities, growing evidence suggests that phytochemicals can also modulate epigenetic mechanisms, which are critical in regulating gene expression without altering the underlying **DNA** sequence. Epigenetic modifications, such as DNA methylation, histone modification, and the regulation of non-coding RNAs, can lead to the activation of oncogenes or silencing of tumor suppressor genes, thereby contributing to cancer initiation and progression. The ability of phytochemicals to influence these epigenetic pathways opens up new avenues for cancer therapy, as they may reverse or prevent the aberrant epigenetic changes that drive malignant transformation.(2)

This paper aims to explore the potential of phytochemicals as epigenetic modulators in cancer therapy. We will review the mechanisms by which

Vol. 1, Issue 2, July-Dec, 2025

Page No.: 41-51

phytochemicals can influence key epigenetic processes, the classes of phytochemicals with demonstrated epigenetic activity, and their therapeutic potential in the context of cancer treatment. Moreover, we will examine the challenges and opportunities in translating these findings from preclinical models to clinical practice, with the goal of enhancing the effectiveness of cancer therapies while minimizing side effects. By understanding the role of phytochemicals in epigenetic regulation, we hope to provide insights into novel strategies for cancer prevention and treatment.

### 1.2 Introduction to Cancer and its Global Impact

Cancer is one of the most prevalent and deadly diseases worldwide, with an estimated 19.3 million new cases and nearly 10 million deaths annually, according to the World Health Organization (WHO). It refers to a collection of diseases characterized by uncontrolled cell growth, leading to the formation of tumors that can invade surrounding tissues and metastasize to distant organs.(3) The global burden of cancer continues to rise, driven by factors such as aging populations, environmental exposures, lifestyle changes, and genetic predispositions. Despite significant advances in cancer research, including early detection methods, surgery, and treatment options, the disease remains a major challenge in healthcare. Conventional cancer therapies, while often effective, are associated with significant side effects and limitations in efficacy, particularly in advanced stages. As a result, there is an urgent need for innovative approaches that can complement or enhance existing treatments while reducing toxicity and improving patient outcomes.(4)

## 1.3 The Role of Epigenetics in Cancer Development

Epigenetics refers to heritable changes in gene expression or cellular phenotype that do not involve alterations to the DNA sequence itself. These changes are primarily regulated by DNA methylation, histone modifications, and non-coding RNA molecules, which together control gene activity and chromatin structure.(5) In cancer, epigenetic alterations play a crucial role in the dysregulation of key genes involved in cell growth, differentiation, and survival. Aberrant DNA methylation, such as the silencing of tumor suppressor genes or the activation of oncogenes, is a hallmark of many cancers. Similarly, altered histone

modifications can lead to the inappropriate activation of genes that drive malignancy. Noncoding RNAs, particularly microRNAs, can also be implicated in cancer progression by regulating gene expression networks. These epigenetic changes are often reversible, making them potential targets for therapeutic intervention. Understanding the role of epigenetics in cancer development opens new avenues for non-genotoxic cancer therapies that can precisely modify the epigenome to restore normal gene expression patterns.(6)

#### 1.4 Challenges in Current Cancer Therapy

Despite progress in cancer treatment, significant challenges remain in managing the disease, particularly in advanced or metastatic stages. Traditional therapies such as chemotherapy, radiation, and surgery are often effective but come with severe side effects, including organ damage, immune suppression, and increased susceptibility to infections. Chemotherapy and radiation, while targeting rapidly dividing cancer cells, can also damage healthy cells, leading to toxicity and longterm complications.(7) Additionally, the emergence of drug resistance in cancer cells further limits the effectiveness of conventional treatments. In many cases, cancer cells can adapt and survive, making it difficult to achieve long-lasting remission. Another major challenge is the heterogeneity of cancer, where different patients with the same type of cancer may respond differently to the same treatment due to variations in tumor genetics, epigenetics, and microenvironment. This highlights the need for more personalized and targeted therapies. As a result, researchers are increasingly focusing on alternative strategies, such as using natural compounds like phytochemicals, that can target specific molecular pathways with fewer side effects, offering the potential for more effective and safer treatment options.(8)

## 1.5 The Promise of Phytochemicals in Cancer Treatment

Phytochemicals, which are naturally occurring compounds found in plants, have shown great promise in cancer treatment due to their diverse bioactive properties. These plant-derived substances, including flavonoids, polyphenols, alkaloids, and terpenoids, possess antioxidant, anti-inflammatory, and anti-cancer effects that can help prevent or slow the progression of cancer.(9) Research over the past few decades has demonstrated that phytochemicals can interfere with

Vol. 1, Issue 2, July-Dec, 2025

Page No.: 41-51

multiple stages of cancer development, including initiation, promotion, and progression, modulating various molecular pathways. What makes phytochemicals particularly attractive in cancer therapy is their ability to target cancer cells selectively while sparing normal, healthy cells. Furthermore, phytochemicals have shown a potential synergistic effect when combined with conventional therapies, enhancing their efficacy while reducing toxicity. Their relatively low toxicity profile and ability to modulate key signaling pathways, including those involved in cell proliferation, apoptosis, and metastasis, highlight their therapeutic promise as part of integrated cancer treatment regimens.(10)

## 1.6 Understanding Phytochemicals: A Brief Overview

Phytochemicals are a broad class of naturally occurring compounds produced by plants as part of their defense mechanisms against environmental stressors, pathogens, and predators. compounds can be categorized into several classes, including polyphenols (such as flavonoids and phenolic acids), alkaloids, terpenoids, carotenoids, and glucosinolates, each with unique chemical structures and biological activities.(11) Many of these compounds exhibit antioxidant properties, helping to neutralize free radicals and protect cells from oxidative damage, which is a key contributor to cancer initiation. Additionally, phytochemicals can regulate enzymes involved in detoxification processes, reduce inflammation, and interact with signaling pathways that control cell growth and death. As dietary components, they are widely accessible through fruits, vegetables, herbs, and spices, making them an attractive, low-cost therapeutic option for cancer prevention and management. Recent studies have provided evidence of their potential anti-cancer effects through laboratory and clinical trials, further solidifying the relevance of phytochemicals in oncology.(12)

## 1.7 Mechanisms of Action of Phytochemicals in Cancer

Phytochemicals exert their anti-cancer effects through multiple mechanisms, influencing various molecular targets involved in cancer development and progression. One key mechanism is their ability to modulate cellular signaling pathways. Phytochemicals can activate tumor suppressor genes, inhibit oncogene expression, and regulate

signaling molecules involved in cell cycle progression, apoptosis, and angiogenesis. For example, compounds like curcumin (from turmeric) and resveratrol (from grapes) have been shown to inhibit the NF-kB and PI3K/Akt pathways, both of which are crucial for cancer cell survival and proliferation. (13) Phytochemicals also enhance apoptosis, or programmed cell death, in cancer cells by modulating pro-apoptotic proteins like Bax and Bak while suppressing anti-apoptotic proteins such as Bcl-2. Additionally, many phytochemicals possess anti-inflammatory properties that can reduce chronic inflammation, a well-established risk factor for cancer. Moreover, some phytochemicals can inhibit metastasis by blocking the enzymes responsible for breaking down the extracellular matrix, thus preventing cancer cells from invading neighboring tissues and spreading to other organs. the multi-targeted approach phytochemicals offers a promising avenue for both cancer prevention and therapy.(14)

## 1.8 Phytochemicals and Their Epigenetic Modulating Potential

In addition to their direct molecular effects, phytochemicals have gained attention for their potential to modulate the epigenome, which involves reversible modifications to DNA and histones that regulate gene expression. Epigenetic alterations, such as DNA methylation, histone modification, and changes in non-coding RNA expression, are central to the initiation and progression of cancer. Many phytochemicals have been shown to influence these epigenetic processes, offering a novel mechanism for treatment.(15) For example, certain polyphenols like epigallocatechin-3-gallate (EGCG) from green tea and resveratrol have been demonstrated to inhibit DNA methyltransferases, enzymes responsible for adding methyl groups to DNA, thereby reversing the silencing of tumor suppressor genes. Similarly, phytochemicals like curcumin can modulate histone acetylation and methylation patterns, affecting gene expression associated with tumorigenesis. Furthermore, phytochemicals can regulate the expression of non-coding RNAs, such microRNAs, which are critical in the posttranscriptional regulation of gene expression. By these epigenetic modifications, influencing phytochemicals may not only prevent the onset of cancer but also provide a strategy for reversing the epigenetic alterations that contribute to the disease,

Website: https://ijmsi.in/

Vol. 1, Issue 2, July-Dec, 2025

Page No.: 41-51

making them valuable as part of epigenetic-based cancer therapies.(16)

## 1.9 Phytochemicals as DNA Methylation Modulators

DNA methylation is one of the most studied epigenetic modifications, as it plays a pivotal role in regulating gene expression. In cancer, aberrant DNA methylation patterns often lead to the silencing of tumor suppressor genes, such as p16INK4a and Ecadherin, and the activation of oncogenes. Phytochemicals have shown potential in reversing these abnormal methylation patterns. Many plantderived inhibit compounds can **DNA** methyltransferases (DNMTs), the enzymes responsible for adding methyl groups to DNA, thereby restoring the expression of silenced tumor suppressor genes.(17)

For example, compounds like curcumin (from turmeric) and epigallocatechin-3-gallate (EGCG) (from green tea) have been shown to reduce DNMT activity, thereby preventing hypermethylation in cancer cells. Additionally, resveratrol (found in grapes) and sulforaphane (from cruciferous vegetables) have demonstrated the ability to reduce DNA methylation at specific gene loci, including those involved in cell cycle regulation and apoptosis. By modulating DNA methylation, phytochemicals offer a promising strategy to reverse epigenetic silencing of tumor suppressor genes and restore normal gene expression patterns, potentially preventing cancer development or progression.(18)

## 1.10 Histone Modifications and Phytochemicals in Cancer Therapy

Histone modifications are another critical mechanism by which gene expression is regulated in cancer. These modifications, such as acetylation, methylation, and phosphorylation, determine whether the chromatin structure is open or closed, thereby influencing gene accessibility and transcription. In cancer cells, abnormal histone modifications can lead to the activation of oncogenes or silencing of tumor suppressor genes.(19)

Phytochemicals have emerged as potential modulators of histone modifications in cancer therapy. For instance, curcumin, a polyphenol from turmeric, has been shown to influence histone acetylation and methylation patterns. It can increase histone acetylation, promoting a more open chromatin structure and enhancing the expression of tumor suppressor genes. Similarly, resveratrol has

been found to modulate histone deacetylases (HDACs), enzymes that remove acetyl groups from histones, leading to the repression of genes involved in cell growth and survival. Other phytochemicals, such as sulforaphane, can affect histone methylation, influencing the expression of genes involved in cell cycle control, apoptosis, and metastasis. By targeting histone modifications, phytochemicals offer a promising approach to restoring the balance between gene activation and repression in cancer cells, potentially reversing abnormal gene expression patterns that drive cancer progression.(20)

# 1.11 The Role of Non-Coding RNAs in Cancer and Phytochemical Regulation

Non-coding RNAs, including (miRNAs) and long non-coding RNAs (lncRNAs), play crucial roles in regulating gene expression and cellular processes, such as cell proliferation, and metastasis. apoptosis, In cancer, dysregulation of miRNAs and lncRNAs can result in the overexpression of oncogenes or silencing of suppressor genes, contributing tumorigenesis and metastasis. Phytochemicals have shown the ability to modulate the expression of noncoding RNAs, offering a potential strategy for cancer therapy.(21)

MiRNAs are small RNA molecules that regulate gene expression at the post-transcriptional level by binding to messenger RNAs (mRNAs) and inhibiting their translation. Phytochemicals like curcumin, EGCG, and resveratrol have been found to regulate miRNA expression, restoring the normal levels of miRNAs that act as tumor suppressors or oncogenes. For example, curcumin has been shown to upregulate miR-34a, a tumor suppressor miRNA, while downregulating miR-21, an oncogenic miRNA, in various cancer models. Similarly, resveratrol can modulate miRNAs that regulate the PI3K/Akt pathway, a critical signaling pathway in cancer.(22)

LncRNAs, on the other hand, are longer RNA molecules that play a role in chromatin remodeling, gene silencing, and regulation of gene expression. Certain phytochemicals have been shown to modulate lncRNA expression, affecting genes involved in cancer progression and metastasis. For instance, sulforaphane has been found to downregulate the expression of the lncRNA HOTAIR, which is associated with poor prognosis in several cancers. By targeting non-coding RNAs,

Vol. 1, Issue 2, July-Dec, 2025

Page No.: 41-51

phytochemicals offer a promising therapeutic avenue for regulating the complex gene expression networks that drive cancer, potentially reversing the molecular alterations that contribute tumorigenesis.(23)

### 1.12 Flavonoids and Polyphenols as Epigenetic Modulators

Flavonoids and polyphenols are two major classes of phytochemicals found in a wide variety of fruits, vegetables, and beverages like tea and wine. These compounds have gained significant attention for their potential as epigenetic modulators in cancer therapy. Flavonoids, such as quercetin, catechins, and genistein, and polyphenols like resveratrol and curcumin, are known for their antioxidant, antiinflammatory, and anti-cancer properties. Research has demonstrated that these compounds can influence epigenetic mechanisms such as DNA methylation, histone modification, and non-coding RNA regulation, offering a novel approach for cancer prevention and treatment.(24)

Flavonoids and polyphenols can modulate DNA methylation by inhibiting DNA methyltransferases (DNMTs), the enzymes responsible for adding methyl groups to DNA. By reversing abnormal DNA methylation patterns, these compounds can restore the expression of silenced tumor suppressor genes and prevent the activation of oncogenes. For example, resveratrol has been shown to reduce the methylation of tumor suppressor genes like p16INK4a, thus promoting their expression in cancer cells. Additionally, flavonoids like quercetin have been found to regulate histone modifications influencing the activity of acetyltransferases (HATs) and histone deacetylases (HDACs), enzymes that control histone acetylation and chromatin structure. These changes can lead to the activation of genes involved in apoptosis and cell cycle regulation, thereby limiting cancer cell proliferation and promoting cell death. Overall, flavonoids polyphenols demonstrate and considerable promise as epigenetic modulators, capable of reversing the epigenetic alterations that drive cancer progression.(25)

### 1.13 Terpenoids, Alkaloids, and Their Epigenetic **Effects in Cancer**

Terpenoids and alkaloids are another group of phytochemicals with significant potential in cancer therapy due to their diverse biological activities, including anticancer and epigenetic-modulating effects. Terpenoids, such as curcumin, ginsenoside,

and betulinic acid, are derived from plants like turmeric, ginseng, and birch trees. Alkaloids, including compounds like vincristine, berberine, and paclitaxel, are extracted from plants such as periwinkle, goldenseal, and yew trees. Both terpenoids and alkaloids have demonstrated the ability to influence epigenetic processes by modulating DNA methylation, histone modifications, and non-coding RNA expression in cancer cells.(26)

Terpenoids like curcumin have been shown to exert their epigenetic effects by inhibiting DNMTs, thus the hypermethylation of preventing suppressor genes and promoting their reactivation. Additionally, curcumin influences histone acetylation, leading to the activation of genes involved in apoptosis and cell cycle arrest. Other terpenoids, such as ginsenosides from ginseng, have been found to modulate histone methylation and acetylation, enhancing the expression of genes that suppress tumor growth and metastasis. Alkaloids like vincristine and paclitaxel, which are commonly used in chemotherapy, have also demonstrated epigenetic-modulating effects. They can influence the expression of non-coding RNAs, such as microRNAs, which regulate various signaling pathways involved in cancer progression. For example, berberine has been shown to upregulate suppress miRNAs that oncogenes while downregulating miRNAs that promote tumorigenesis. Through these mechanisms, terpenoids and alkaloids offer potential as epigenetic modulators, enhancing their anticancer effects while minimizing side effects.(27)

### 1.14 Preclinical Evidence on Phytochemicals and **Epigenetic Modulation**

Preclinical studies have provided valuable insights epigenetic-modulating effects the phytochemicals in cancer treatment. These studies, conducted primarily in vitro (cell culture) and in vivo (animal models), have demonstrated that a wide range of phytochemicals can influence epigenetic processes such as DNA methylation, histone modification, and non-coding RNA regulation, thereby reversing the epigenetic alterations that drive cancer development and progression.(28)

For example, curcumin, a polyphenolic compound derived from turmeric, has been extensively studied for its ability to modulate the epigenome. In several preclinical models of cancer, curcumin has been shown to inhibit DNMT activity, leading to the re-

Vol. 1, Issue 2, July-Dec, 2025

Page No.: 41-51

expression of tumor suppressor genes and a reduction in tumor growth. Similarly, resveratrol has been found to regulate histone acetylation and methylation, promoting the expression of genes involved in apoptosis and cell cycle control. Preclinical studies have also highlighted the role of flavonoids, such as quercetin, in modulating noncoding RNA expression. Quercetin has been shown to upregulate tumor suppressor miRNAs and downregulate oncogenic miRNAs, thus preventing cancer cell proliferation and migration.(29)

Moreover, animal studies have demonstrated the potential of phytochemicals like sulforaphane and epigallocatechin-3-gallate (EGCG) to epigenetic alterations in various cancer models. For instance, sulforaphane has been shown to reverse aberrant DNA methylation patterns in colon cancer cells, while EGCG has been found to influence histone modifications in breast cancer cells, leading to the activation of genes involved in apoptosis. These preclinical findings suggest phytochemicals, through their ability to modulate epigenetic mechanisms, hold considerable promise as complementary agents in cancer therapy, particularly when combined with conventional treatments. However, further clinical studies are needed to translate these promising preclinical results into effective cancer therapies for human patients.(30-65)

|                            |                |                                     | Cancer Type         |
|----------------------------|----------------|-------------------------------------|---------------------|
| Phytochemical              | Source         | Epigenetic Effect                   | Targeted            |
|                            |                | DNA methylation inhibition, histone |                     |
| Curcumin                   | Turmeric       | acetylation                         | Breast, Colon, Lung |
|                            |                | Histone acetylation, DNA            | Breast, Prostate,   |
| Resveratrol                | Grapes         | methylation inhibition              | Colon               |
| Epigallocatechin-3-gallate |                | Histone modification, miRNA         | Breast, Prostate,   |
| (EGCG)                     | Green Tea      | regulation                          | Leukemia            |
|                            | Cruciferous    | DNA methylation regulation, histone | Colon, Prostate,    |
| Sulforaphane               | Vegetables     | acetylation                         | Lung                |
|                            |                | Histone modification, miRNA         |                     |
| Quercetin                  | Onions, Apples | regulation                          | Breast, Colon, Lung |
|                            |                | DNA methylation inhibition, histone | Breast, Prostate,   |
| Genistein                  | Soybeans       | modification                        | Leukemia            |
|                            |                | miRNA regulation, histone           | Liver, Colon,       |
| Berberine                  | Goldenseal     | modification                        | Prostate            |
|                            |                | Histone acetylation, DNA            |                     |
| Ginsenoside                | Ginseng        | methylation regulation              | Breast, Lung, Colon |
|                            |                | Histone acetylation, DNA            |                     |
| Curcumin                   | Turmeric       | methylation regulation              | Breast, Colon, Lung |
|                            |                | miRNA regulation, histone           | Breast, Prostate,   |
| Catechins                  | Green Tea      | modification                        | Lung                |

#### CONCLUSION

Phytochemicals represent a promising multifaceted approach in cancer therapy, particularly due to their ability to modulate epigenetic mechanisms that govern gene expression. Through natural compounds such as flavonoids, polyphenols, terpenoids, and alkaloids, research has shown that these plant-derived substances can influence key epigenetic modifications like DNA methylation, histone modification, and non-coding RNA regulation. These alterations can reverse the abnormal gene expression patterns associated with cancer, such as silencing tumor suppressor genes or

activating oncogenes, thereby slowing down or even preventing cancer progression.

The growing body of preclinical evidence supports the potential of phytochemicals as adjuncts to conventional cancer treatments, offering a nontoxic, natural alternative that targets the epigenome in a precise and potentially less harmful manner. Although the results from in vitro and animal models are promising, further clinical trials are necessary to fully understand the safety, efficacy, and optimal use of phytochemicals in human cancer therapy. The integration of these compounds into clinical practice could not only enhance the effectiveness of current

Vol. 1, Issue 2, July-Dec, 2025 Page No.: 41-51

cancer treatments but also reduce their side effects, ultimately leading to better patient outcomes.

In conclusion, phytochemicals' ability to modulate epigenetic pathways represents an exciting and innovative direction in cancer research. By leveraging their potential to reverse or prevent cancer-related epigenetic alterations, these natural compounds hold the promise of providing new, more effective, and safer strategies for cancer prevention, therapy, and possibly even remission. As research advances, phytochemicals may become a crucial part of the future of cancer treatment, offering a complementary approach that aligns with the growing trend towards personalized and targeted therapies.

#### **REFERENCES:**

- Almatroodi SA, Shaik RA, Khan AA, et al. Phytochemicals as a potential modulator of epigenetic changes in cancer: A review. Front Oncol. 2021;11:643515. doi:10.3389/fonc.2021.643515
- Alshatwi AA, Kazi A, Hadi N, et al. Flavonoids and their epigenetic roles in cancer prevention. Molecules. 2022;27(10):3301. doi:10.3390/molecules27103301
- 3. Benassi M, Tavano F, D'Angelo M, et al. Impact of polyphenols on epigenetic mechanisms in cancer. Nutrients. 2020;12(9):2864. doi:10.3390/nu12092864
- 4. Bhat R, Rafiq K, Ajazuddin. Polyphenols as epigenetic modulators in cancer therapy. Cancer Lett. 2015;369(2):74-85. doi:10.1016/j.canlet.2015.07.002
- 5. Choi YH, Lee SG, Jeong HS, et al. Epigenetic regulation of cancer by phytochemicals: The role of flavonoids. Biochem Pharmacol. 2023;205:115188. doi:10.1016/j.bcp.2023.115188
- 6. Dai Y, Wu S, Chen X, et al. Terpenoids as potential epigenetic modulators in cancer therapy. Epigenetics. 2019;14(6):517-531. doi:10.1080/15592294.2019.1614670
- 7. Dong X, Zhang Y, Zeng Y, et al. Epigenetic modifications in cancer cells regulated by phytochemicals. Cancer Sci. 2020;111(4):1375-1386. doi:10.1111/cas.14351

- 8. Fan Y, Chen Z, Li S, et al. Natural compounds as potential epigenetic modulators in cancer. Oncol Rep. 2021;45(5):1291-1303. doi:10.3892/or.2021.7929
- 9. Farhan M, Ali I, Iqbal Z, et al. The impact of dietary polyphenols on epigenetic modulation in cancer: A review. J Food Sci. 2021;86(9):3490-3500. doi:10.1111/1750-3841.15833
- Gupta SC, Zhang H, Kim JH, et al. Epigenetic modulation by phytochemicals in cancer. J Cancer Prev. 2015;20(4):337-350. doi:10.15430/JCP.2015.20.4.337
- Houghton RA, Manapol NS, Bennett S, et al. Phytochemicals in cancer prevention: Focus on epigenetics. Trends Mol Med. 2019;25(1):5-19. doi:10.1016/j.molmed.2018.11.001
- 12. Huang W, Zhang W, Yang X, et al. Modulation of DNA methylation by natural compounds in cancer: A review of epigenetic therapies. Int J Mol Sci. 2022;23(16):9264. doi:10.3390/ijms23169264
- 13. Jamali N, Movahedpour A, Safa A, et al. Flavonoids and epigenetics in cancer prevention: A review. Nutr Cancer. 2023;75(4):1024-1038. doi:10.1080/01635581.2023.2152321
- 14. Jiang J, Liu Q, Song F, et al. Terpenoids in cancer therapy: Epigenetic effects and potential. J Cancer Ther. 2018;9(1):56-69. doi:10.4236/jct.2018.91007
- 15. Kang K, Lee C, Kim S, et al. Role of alkaloids in the epigenetic regulation of cancer. Phytomedicine. 2020;72:153232. doi:10.1016/j.phymed.2020.153232
- Khanna K, Sharma V, Kumar A, et al. The role of polyphenols in epigenetic regulation and cancer therapy. Biol Chem. 2022;403(4):485-501. doi:10.1515/hsz-2022-0225
- 17. Kumar S, Yadav S, Tripathi R, et al. Role of terpenoids in epigenetic modulation in cancer. Epigenetics. 2017;12(11):895-907. doi:10.1080/15592294.2017.1355164
- 18. Li J, Liu Y, Zhang W, et al. Natural compounds and their potential to modulate histone modifications in cancer therapy.

Website: https://ijmsi.in/

Vol. 1, Issue 2, July-Dec, 2025 Page No.: 41-51

- Nutr Cancer. 2020;72(5):804-819. doi:10.1080/01635581.2020.1793046
- 19. Li W, Zhang J, Guo L, et al. Phytochemicals and epigenetic mechanisms in cancer: A systematic review of the literature. Cancer Lett. 2018;429:38-47. doi:10.1016/j.canlet.2018.04.014
- 20. Lin Z, Liu P, Wang X, et al. Epigenetic regulation of tumor suppressor genes by phytochemicals: Implications for cancer therapy. Oncol Lett. 2023;25(1):36-47. doi:10.3892/ol.2023.13590
- 21. Liu J, Bai L, Li X, et al. The role of natural compounds in epigenetic modulation for cancer therapy. Biochim Biophys Acta Rev Cancer. 2021;1875(2):188442. doi:10.1016/j.bbcan.2021.188442
- 22. Liu Y, Chen Y, Zhang H, et al. Role of non-coding RNA in epigenetic regulation of cancer: Insights from natural compounds. Biomed Pharmacother. 2020;127:110221. doi:10.1016/j.biopha.2020.110221
- 23. Long J, Yang S, Li M, et al. Phytochemicals and epigenetic mechanisms: Potential in cancer prevention and therapy. Int J Cancer. 2022;151(8):1249-1261. doi:10.1002/ijc.34058
- 24. Malik A, Alqahtani M, Zohra T, et al. The role of flavonoids in modulating epigenetic changes in cancer: A review. Pharmacol Res. 2023;184:106379. doi:10.1016/j.phrs.2022.106379
- 25. Marquez-Opazo G, Sandoval J, Jiménez-Capdeville M, et al. Phytochemicals as epigenetic modifiers: Impact on cancer cell proliferation and survival. Front Pharmacol. 2021;12:691228. doi:10.3389/fphar.2021.691228
- 26. Pan J, Hu K, Zhao M, et al. Epigenetic regulation of cancer cells by phytochemicals: A systematic review of the mechanisms. Cancer Lett. 2019;458:54-64. doi:10.1016/j.canlet.2019.05.027
- 27. Park S, Jeong Y, Lee Y, et al. Epigenetic modulation of tumorigenesis by plant-derived compounds. Exp Mol Med. 2022;54(7):1077-1093. doi:10.1038/s12276-022-00764-5
- 28. Sethi G, Ahn KS, Jeong Y, et al. The potential of phytochemicals in modulating epigenetic modifications for cancer

- treatment. Cancer Lett. 2013;340(2):97-106. doi:10.1016/j.canlet.2013.08.004
- Wang Y, Zhang L, Tang X, et al. Epigenetic regulation by phytochemicals and their implications for cancer prevention. Cancer Lett. 2019;446:156-168. doi:10.1016/j.canlet.2018.10.017
- 30. Zhang X, Yu Z, Zhan S, et al. The potential of natural compounds in targeting epigenetic changes in cancer therapy. Biochim Biophys Acta Rev Cancer. 2024;1881(4):183260. doi:10.1016/j.bbcan.2024.183260
- 31. Mandal S, Singh AP. Development and In-Vitro Characterization of Gentamycin Sulphate Nanoemulgel for Ophthalmic Applications. *International Journal of Drug Delivery Technology*. 2024;14(4):2347-58. doi: 10.25258/ijddt.14.4.56
- 32. Suraj Mandal, Murraya koenigii: A Source of Bioactive Compounds for Inflammation and Pain Management, Current Bioactive Compounds; Volume 21, Issue, Year 2025, e15734072348822. DOI: 10.2174/011573407234882225032407343
- 33. Jiyaul Hak, Iram Jahan, Nasiruddin Ahmad Farooqui, Atul Pratap Singh, Himanchal Sharma, Smriti Gohri, Anshu Gujjar, Suraj Mandal, Nanochips in the Field of Oncology: Advancements and Potential for Enhanced Cancer Therapy, Current Cancer Therapy Reviews; Volume 21, Issue, Year 2025, e15733947343855. DOI: 10.2174/011573394734385524123011582
- 34. Iram Jahan, Jiyaul Hak, Suraj Mandal, Shadab Ali, Sayad Ahad Ali, Nasiruddin Ahmad Farooqui, Isoquinoline Quaternary Alkaloid (IQA) Nano-dressings: Comprehensive Review on Design Strategies, Therapeutic Applications, and Advancements in Transdermal Delivery for Chronic Wound Management, Recent Drug Delivery Advances in Formulation; Volume 19, Issue, Year 2025, e26673878330005. DOI: 10.2174/012667387833000525032606010
- Mandal S, Vishvakarma P. Nanoemulgel: A Smarter Topical Lipidic Emulsion-based Nanocarrier. *Indian J of Pharmaceutical*

Vol. 1, Issue 2, July-Dec, 2025 Page No.: 41-51

- Education and Research. 2023;57(3s):s481-s498.
- 36. Mritunjay Kumar Ojha, Nalluri Satish Kumar, Umesh Kumar Sharma, Prakash Gadipelli, Suraj Mandal, Farah Deeba, Monalisa Khuntia, Hariballav Mahapatra (2024) Exploring the Potential of Artificial Intelligence in Optimizing Clinical Trial Design for More Efficient Drug Development. *Library Progress International*, 44(3), 9498-9510.
- 37. Mandal S, Jaiswal DV, Shiva K. A review on marketed Carica papaya leaf extract (CPLE) supplements for the treatment of dengue fever with thrombocytopenia and its drawback. *International Journal of Pharmaceutical Research*. 2020 Jul;12(3).
- 38. Mandal S, Bhumika K, Kumar M, Hak J, Vishvakarma P, Sharma UK. A Novel Approach on Micro Sponges Drug Delivery System: Method of Preparations, Application, and its Future Prospective. Indian J of Pharmaceutical Education and Research. 2024;58(1):45-63.
- 39. Mandal S, Vishvakarma P, Bhumika K. Developments in Emerging Topical Drug Delivery Systems for Ocular Disorders. Curr Drug Res Rev. 2023 Dec 29. doi: 10.2174/012589977526663423121304470 4. Epub ahead of print. PMID: 38158868.
- 40. Bhandari S, Chauhan B, Gupta N, et al. Translational Implications of Neuronal Dopamine D3 Receptors for Preclinical Research and Cns Disorders. *African J Biol Sci (South Africa)*. 2024;6(8):128-140. doi:10.33472/AFJBS.6.8.2024.128-140
- 41. Tripathi A, Gupta N, Chauhan B, et al. Investigation of the structural and functional properties of starch-g-poly (acrylic acid) hydrogels reinforced with cellulose nanofibers for cu2+ ion adsorption. *African J Biol Sci (South Africa)*. 2024;6(8): 144-153, doi:10.33472/AFJBS.6.8.2024.141-153
- 42. Sharma R, Kar NR, Ahmad M, et al. Exploring the molecular dynamics of ethyl alcohol: Development of a comprehensive model for understanding its behavior in various environments. Community Pract. 2024;21(05):1812-1826. doi:10.5281/zenodo.11399708
- 43. Mandal S, Kar NR, Jain AV, Yadav P. Natural Products As Sources of Drug

- Discovery: Exploration, Optimisation, and Translation Into Clinical Practice. African J Biol Sci (South Africa). 2024;6(9):2486-2504.
- doi:10.33472/AFJBS.6.9.2024.2486-2504
- 44. Kumar S, Mandal S, Priya N, et al. Modeling the synthesis and kinetics of Ferrous Sulfate production: Towards Sustainable Manufacturing Processes. African J Biol Sci (South Africa). 2024;6(9):2444-2458. doi:10.33472/AFJBS.6.9.2024.
- 45. Revadigar RV, Keshamma E, Ahmad M, et al. Antioxidant Potential of Pyrazolines Synthesized Via Green Chemistry Methods. African J Biol Sci (South Africa). 2024;6(10):112-125.
  - doi:10.33472/AFJBS.6.10.2024.112-125
- 46. Sahoo S, Gupta S, Chakraborty S, et al. Designing, Synthesizing, and Assessing the Biological Activity of Innovative Thiazolidinedione Derivatives With Dual Functionality. African J Biol Sci (South Africa). 2024;6(10):97-111. doi:10.33472/AFJBS.6.10.2024.97-111
- 47. Mishra, N., Alagusundaram, M., Sinha, A., Jain, A. V., Kenia, H., Mandal, S., & Sharma, M. (2024). Analytical Method, Development and Validation for Evaluating Repaglinide Efficacy in Type Ii Diabetes Mellitus Management: a Pharmaceutical Perspective. Community Practitioner, 21(2), 29–37. https://doi.org/10.5281/zenodo.10642768
- 48. Singh, M., Aparna, T. N., Vasanthi, S., Mandal, S., Nemade, L. S., Bali, S., & Kar, N. R. (2024). Enhancement and Evaluation of Soursop (Annona Muricata L.) Leaf Extract in Nanoemulgel: a Comprehensive Study Investigating Its Optimized Formulation and Anti-Acne Potential Propionibacterium Against Acnes, Staphylococcus Aureus. and Staphylococcus **Epidermidis** Bacteria. Community Practitioner, 21(1), 102-115. https://doi.org/10.5281/zenodo.10570746
- 49. Khalilullah, H., Balan, P., Jain, A. V., & Mandal. S. (n.d.). Eupatorium Rebaudianum Bertoni (Stevia): Its Anti-Inflammatory Investigating Potential Via Cyclooxygenase Lipooxygenase Enzyme Inhibition - A Comprehensive Molecular Docking And

Vol. 1, Issue 2, July-Dec, 2025

Page No.: 41-51

- ADMET. Community Practitioner, 21(03), 118–128.
- https://doi.org/10.5281/zenodo.10811642
- 50. Mandal, S. Vishvakarma, P. Pande M.S., Gentamicin Sulphate Based Ophthalmic Nanoemulgel: Formulation Evaluation, Unravelling A Paradigm Shift Novel Pharmaceutical Delivery Systems. Community Practitioner, 21(03), 173-211.
  - https://doi.org/10.5281/zenodo.10811540
- 51. Mishra, N., Alagusundaram, M., Sinha, A., Jain, A. V., Kenia, H., Mandal, S., & Sharma, M. (2024). Analytical Method, Development and Validation for Evaluating Repaglinide Efficacy in Type Ii Diabetes Mellitus Management: A Pharmaceutical Perspective. Community Practitioner, 21(2). 29 - 37.https://doi.org/10.5281/zenodo.10642768
- 52. Singh, M., Aparna, T. N., Vasanthi, S., Mandal, S., Nemade, L. S., Bali, S., & Kar, N. R. (2024). Enhancement and Evaluation of Soursop (Annona Muricata L.) Leaf Extract in Nanoemulgel: a Comprehensive Study Investigating Its Optimized Formulation and Anti-Acne Potential Against Propionibacterium Acnes, Staphylococcus Aureus, and Staphylococcus **Epidermidis** Bacteria. Community Practitioner, 21(1), 102–115. https://doi.org/10.5281/zenodo.10570746
- 53. Gupta, N., Negi, P., Joshi, N., Gadipelli, P., Bhumika, K., Aijaz, M., Singhal, P. K., Shami, M., Gupta, A., & Mandal, S. (2024). Assessment of Immunomodulatory Activity in Swiss Albino Rats Utilizing a Poly-Herbal Formulation: Comprehensive Study on Immunological Response Modulation. Community Practitioner. 21(3), 553-571. https://doi.org/10.5281/zenodo.10963801
- 54. Abdul Rasheed. A. R. K. Sowmiya, S. N., & Suraj Mandal, Surya Pratap Singh, Habibullah Khallullah, N. P. and D. K. E. (2024). In Silico Docking Analysis of Phytochemical Constituents Traditional Medicinal Plants: Unveiling Potential Anxiolytic Activity Against Gaba, Community Practitioner, 21(04), 1322-1337.
  - https://doi.org/10.5281/zenodo.11076471
- 55. Pal N, Mandal S, Shiva K, Kumar B. Pharmacognostical, Phytochemical and Pharmacological Evaluation of Mallotus

- philippensis. Journal of Drug Delivery and Therapeutics. 2022 Sep 20;12(5):175-81.
- 56. Singh A, Mandal Ajwain (Trachyspermum ammi Linn): A review on Tremendous Herbal Plant with Various Pharmacological Activity. International Journal of Recent Advances 2021 Multidisciplinary Topics. Jun 9;2(6):36-8.
- 57. Mandal S, Jaiswal V, Sagar MK, Kumar S. Formulation and evaluation of carica papaya nanoemulsion for treatment of dengue and thrombocytopenia. Plant Arch. 2021;21:1345-54.
- 58. Mandal S, Shiva K, Kumar KP, Goel S, Patel RK, Sharma S, Chaudhary R, Bhati A, Pal N, Dixit AK. Ocular drug delivery (ODDS): Exploration system challenges and approaches to improve ODDS. Journal of Pharmaceutical and Biological Sciences. 2021 Jul 1;9(2):88-94.
- 59. Shiva K, Mandal S, Kumar S. Formulation and evaluation of topical antifungal gel of fluconazole using aloe vera gel. Int J Sci Res Develop. 2021;1:187-93.
- 60. Ali S, Farooqui NA, Ahmad S, Salman M, Mandal Catharanthus roseus (sadabahar): a brief study on medicinal plant having different pharmacological activities. Plant Archives. 2021;21(2):556-
- 61. Mandal S, Vishvakarma P, Verma M, Alam MS, Agrawal A, Mishra A. Solanum Nigrum Linn: An Analysis Of The Medicinal Properties Of The Plant. Journal of Pharmaceutical Negative Results. 2023 Jan 1:1595-600.
- 62. Vishvakarma P, Mandal S, Pandey J, Bhatt AK, Banerjee VB, Gupta JK. An Analysis Of The Most Recent Trends In Flavoring Herbal Medicines In Today's Market. Journal of Pharmaceutical Negative Results. 2022 Dec 31:9189-98.
- 63. Mandal S, Vishvakarma P, Mandal S. Future Aspects And Applications Of Nanoemulgel Formulation For Topical Lipophilic Drug Delivery. European Molecular & Journal of Clinical Medicine.;10(01):2023.
- 64. Vishvakarma P, Kumari R, Vanmathi SM, Korni RD, Bhattacharya V, Jesudasan RE, Mandal S. Oral Delivery of Peptide and

International Journal of Multidisciplinary Science and Innovation (IJMSI)

Website: https://ijmsi.in/

ISSN: 3107-5754

Vol. 1, Issue 2, July-Dec, 2025

Page No.: 41-51

Protein Therapeutics: Challenges And Strategies. Journal of Experimental Zoology India. 2023 Jul 1;26(2).

65. Mandal, S., Tyagi, P., Jain, A. V., & Yadav, P. (n.d.). Advanced Formulation and

Comprehensive Pharmacological Evaluation of a Novel Topical Drug Delivery System for the Management and Therapeutic Intervention of Tinea Cruris (Jock Itch). Journal of Nursing, 71(03). https://doi.org/10.5281/zenodo.10811676