Review

Posaconazole-Loaded Chitosan Transdermal Films: A Microemulsion-Based Strategy for Aspergillosis

Subham Mandal¹, Suraj Mandal²

¹Department of Pharmacy, IIMT College of Medical Sciences, IIMT University, O-Pocket, Ganganagar, Meerut, 250001, U.P., India

²Sujata Research Laboratories, Vill. Mataiyalalpur, Post-Ramnagra, Dist-Pilibhit, 262122, U.P., India

Corresponding Author:

Suraj Mandal

Email:

sk8006721807@gmail.com

DOI: 10.62896/ijmsi.1.2.03

Conflict of interest: NIL

Article History

Received: 05/07/2025 Accepted: 28/08/2025 Published: 20/09/2025

Abstract:

Posaconazole, a broad-spectrum antifungal agent, has gained prominence in the treatment of Aspergillosis. However, its clinical efficacy is often limited due to poor bioavailability and the need for frequent administration. To overcome these limitations, this study proposes the development of Posaconazole-loaded chitosan transdermal films using a microemulsion-based strategy. The microemulsion system serves as a potential carrier for enhanced drug penetration, facilitating controlled release and increasing the bioavailability of Posaconazole. Chitosan, a biocompatible and biodegradable polymer, was utilized to prepare transdermal films that exhibit favorable mechanical properties and skin permeability. The films were optimized for their drug-loading capacity, in vitro release behavior, and skin permeation profile, with the goal of improving the therapeutic efficacy of Posaconazole in the treatment of Aspergillosis. The results demonstrate that the microemulsion-based strategy significantly enhances the transdermal delivery of Posaconazole, providing a promising alternative to conventional oral or intravenous formulations. This approach holds potential for improving patient compliance and treatment outcomes for Aspergillosis.

Keywords: Posaconazole, Chitosan, Transdermal Films, Microemulsion, Aspergillosis, Drug Delivery, Bioavailability, Controlled Release, Skin Permeation.

This is an Open Access article that uses a funding model which does not charge readers or their institutions for access and distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0) and the Budapest Open Access Initiative (http://www.budapestopenaccessinitiative.org/read), which permit unrestricted use, distribution, and reproduction in any medium, provided original work is properly credited.

1.1 Introduction:

Aspergillosis, a fungal infection caused by Aspergillus species, is a significant health concern, particularly in immunocompromised individuals, such as those with HIV/AIDS, organ transplant recipients, and patients undergoing chemotherapy. The treatment of Aspergillosis typically involves the use of antifungal agents, with Posaconazole being one of the most effective and widely used drugs due to its broad-spectrum activity against Aspergillus opportunistic fungi. other However, Posaconazole's clinical use is hindered by its poor oral bioavailability, complex dosing regimens, and the need for frequent administration, which often lead to suboptimal drug levels in patients, especially

in those with gastrointestinal issues or those requiring long-term treatment.(1)

To address these challenges, alternative drug delivery systems have been investigated to enhance the bioavailability and therapeutic efficacy of Posaconazole. One promising strategy is the development of transdermal drug delivery systems, which allow for the controlled, sustained release of drugs through the skin, bypassing the first-pass metabolism and improving patient compliance. Chitosan, a natural polysaccharide derived from chitin, has garnered attention as a biocompatible and biodegradable polymer for transdermal drug delivery due to its favorable properties, including

Website: https://ijmsi.in/

ISSN: 3107-5754 Vol. 1, Issue 2, July-Dec, 2025

Page No.: 22-31

mucoadhesion, biocompatibility, and ease of film formation.

Incorporating a microemulsion-based strategy into this delivery system offers the potential for improved solubility and skin penetration of hydrophobic drugs like Posaconazole. Microemulsions are thermodynamically stable, clear, and isotropic systems composed of water, oil, and surfactant, which can facilitate enhanced drug solubility and transdermal delivery. By using chitosan as the polymer matrix and integrating a microemulsion formulation, it is possible to create transdermal films that not only enhance the drug's skin permeation but also provide a controlled release, ensuring a consistent therapeutic effect over time.(2)

This study aims to explore the potential of Posaconazole-loaded chitosan transdermal films prepared using a microemulsion-based strategy to improve the efficacy of treatment for Aspergillosis. The objective is to optimize the formulation for enhanced drug loading, skin penetration, and controlled release, thereby offering a more effective and convenient alternative to conventional Posaconazole administration.

1.2 Overview of Aspergillosis and its Clinical Impact

Aspergillosis refers to a range of infections caused by Aspergillus species, particularly Aspergillus fumigatus, which are ubiquitous mold species found in the environment. These infections can manifest in various forms, from mild allergic reactions to severe, invasive disease.(3) Invasive Aspergillosis is especially dangerous for immunocompromised patients, such as those undergoing chemotherapy, organ transplantation, or suffering from chronic diseases like HIV/AIDS. These patients are at higher risk due to their weakened immune systems, making them vulnerable to opportunistic infections. The clinical impact of Aspergillosis is significant, with high mortality rates in severe cases, particularly if not diagnosed and treated promptly. Invasive Aspergillosis can affect vital organs such as the lungs, sinuses, and brain, causing extensive tissue damage, and often requiring aggressive antifungal therapy. As the incidence of immunocompromised conditions increases, Aspergillosis is becoming an emerging global health concern, making the need for effective treatment strategies even more pressing.(4)

1.3 Current Treatment Options for Aspergillosis

The treatment of Aspergillosis typically involves the use of systemic antifungal agents. The first-line therapy for invasive Aspergillosis includes drugs such as Voriconazole, Amphotericin B, and Posaconazole. These agents are effective against Aspergillus species, but their usage is often limited by factors such as drug resistance, side effects, and the need for precise dosing.(5) Voriconazole, for example, is commonly used but requires frequent monitoring due to its potential for severe side effects and variable pharmacokinetics. Amphotericin B, while potent, is associated with nephrotoxicity and infusion-related reactions. Posaconazole, a newer triazole antifungal, is also an option but typically used in situations where other treatments fail. Additionally, adjunctive therapies such as surgery may be considered in cases of localized infection. Despite the availability of these agents, treatment regimens often require careful management due to the variability in drug responses and patient tolerance. Thus, the development of alternative and more effective drug delivery systems is essential for improving treatment outcomes.(6)

1.4 Limitations of Oral and Intravenous Posaconazole Therapy

Posaconazole is a broad-spectrum antifungal agent that has been shown to be effective against a variety of fungal pathogens, including Aspergillus species. However, the use of Posaconazole in clinical practice is associated with several limitations that hinder its efficacy. The oral formulation Posaconazole is highly dependent on gastrointestinal absorption, which can be affected by food intake, gastrointestinal motility, and pH, leading to inconsistent bioavailability.(7) In some cases, this results in suboptimal plasma drug concentrations, putting patients at risk for treatment failure. Additionally, the oral form often requires complex dosing regimens, which can lead to noncompliance and inadequate therapeutic effects. On the other hand, the intravenous form Posaconazole is more reliable in terms αf bioavailability but requires hospitalization or outpatient infusion, adding to the burden of the treatment. Intravenous administration also carries risks such as infection at the infusion site and more frequent monitoring for adverse effects. These limitations underscore the need for alternative drug delivery systems, such as transdermal formulations, that could offer more consistent drug release, better

Website: https://ijmsi.in/

Vol. 1, Issue 2, July-Dec, 2025

Page No.: 22-31

patient compliance, and improved therapeutic outcomes.(8)

1.5 Challenges in Improving Posaconazole Bioavailability

Despite Posaconazole's potent antifungal activity, its clinical efficacy is often limited by its poor bioavailability when administered orally. Posaconazole is a lipophilic compound, which means it has limited solubility in water, resulting in inadequate absorption in the gastrointestinal tract.(9) This poor absorption is compounded by the need for a high-fat meal to improve its bioavailability, making the drug's clinical application less predictable. Additionally, the first-pass metabolism in the liver further reduces the drug's systemic exposure, necessitating higher and more frequent doses to maintain therapeutic levels. These limitations pose significant challenges, particularly in patients who may have gastrointestinal issues, such as those undergoing chemotherapy, who might struggle with oral drug absorption. Furthermore, variability in drug plasma concentrations increases the risk of treatment failure or adverse effects, underlining the importance of developing alternative delivery methods that can circumvent these bioavailability issues.(10)

1.6 Transdermal Drug Delivery: A Promising Alternative

Transdermal drug delivery offers a promising solution to many of the challenges associated with traditional oral and intravenous therapies, especially for drugs like Posaconazole. The transdermal route allows for the drug to be absorbed directly through the skin, bypassing the gastrointestinal tract and liver, thereby avoiding first-pass metabolism.(11) This results in more consistent and predictable drug concentrations in the bloodstream. Transdermal delivery systems can provide controlled, sustained release of the drug, ensuring a more stable therapeutic effect over time, which is particularly beneficial for treatments long-term Aspergillosis. Furthermore, transdermal systems improve patient compliance by eliminating the need for frequent oral dosing or intravenous infusions, making them a more convenient option for both patients and healthcare providers. However, the challenge remains in improving skin penetration, especially for hydrophobic drugs like Posaconazole, which require specialized formulations to ensure effective delivery through the skin barrier.(12)

1.7 Role of Chitosan in Drug Delivery Systems

Chitosan, a biopolymer derived from chitin, has gained significant attention in the field of drug delivery due to its biocompatibility, biodegradability, and favorable properties for enhancing drug absorption. Chitosan is non-toxic, readily available, and offers excellent mucoadhesive properties, making it an ideal candidate for transdermal formulations. Its ability to form films provides a versatile medium for encapsulating drugs like Posaconazole and allowing for controlled release.(13) Chitosan is particularly beneficial in improving the permeation of hydrophobic drugs across the skin by enhancing solubility and creating a stable, continuous drug release system. Additionally, chitosan's cationic nature can facilitate the interaction with the skin's negatively charged surfaces, improving drug penetration. The polymer's versatility also extends to its potential for modifying drug release rates, providing a tailored approach to drug delivery that can address the specific needs of patients requiring long-term treatment for fungal infections like Aspergillosis. As a result, chitosanbased transdermal systems are emerging as a promising strategy for improving the bioavailability and therapeutic efficacy of Posaconazole.(14)

1.8 Advantages of Chitosan in Transdermal Drug Delivery

Chitosan offers several advantages in transdermal drug delivery systems, making it an ideal polymer for enhancing the efficacy of drugs like Posaconazole. First, its biocompatibility and biodegradability ensure that it is safe for use in humans, with minimal risk of adverse reactions. Chitosan's ability to form films allows for the controlled release of drugs, ensuring a steady and prolonged therapeutic effect. Additionally, its mucoadhesive properties transdermal system adhere to the skin, enhancing the contact time and increasing the chances of efficient drug absorption.(15) Chitosan also facilitates skin permeation by modifying the structure of the stratum corneum, the skin's outermost barrier, without causing any significant damage. Furthermore, chitosan's natural cationic charge enhances its interaction with the negatively charged skin cells, allowing for better drug penetration. Its flexibility in formulation, coupled with its ability to stabilize active compounds and protect them from degradation, further improves the performance of transdermal drug delivery systems.(16)

1.9 Microemulsion-Based Drug Delivery Systems

Website: https://ijmsi.in/ ISSN: 3107-5754

Vol. 1, Issue 2, July-Dec, 2025

Page No.: 22-31

Microemulsion-based drug delivery systems are a promising approach to enhance the solubility, stability, and bioavailability of hydrophobic drugs, such as Posaconazole. A microemulsion is a thermodynamically stable, isotropic mixture of oil, water, and surfactant, typically containing a cosurfactant, that can encapsulate and solubilize poorly water-soluble drugs. The small droplet size (typically in the nanometer range) microemulsions ensures that the drug is evenly distributed and readily available for absorption through biological membranes. (17)This formulation is particularly advantageous for transdermal drug delivery, as the microemulsion's structure can improve the penetration hydrophobic drugs across the skin barrier. Additionally, microemulsions exhibit improved drug stability compared to traditional formulations, as they prevent the degradation of sensitive drugs through the encapsulation process. Due to their ability to enhance drug solubility and skin systems permeability, microemulsion-based represent a significant advancement in the development of transdermal delivery systems for antifungal agents like Posaconazole.(18)

1.10 Microemulsion as a Solubility Enhancer for **Hydrophobic Drugs**

Hydrophobic drugs like Posaconazole face significant challenges when it comes to solubility, which can limit their bioavailability and therapeutic efficacy. Microemulsions serve as an effective solubility enhancer by providing a stable environment in which the hydrophobic drug can be dissolved.(19) The oil phase in a microemulsion acts as a solvent for hydrophobic drugs, while the surfactants and co-surfactants reduce the surface tension between oil and water, allowing for better dispersion of the drug in the aqueous phase. This results in the formation of small droplets of drugloaded microemulsions that can be easily absorbed by the skin. The ability of microemulsions to solubilize hydrophobic drugs significantly enhances their absorption, bypassing the solubility limitations that often impede their therapeutic potential. Furthermore, microemulsions provide a controlled release of the drug, ensuring that the therapeutic levels are maintained over a prolonged period. This characteristic is especially valuable in transdermal drug delivery, where steady and consistent drug delivery is essential for effective treatment. (20)

1.11 Mechanism **Transdermal** Drug Penetration

The mechanism of transdermal drug penetration involves the diffusion of the drug through the skin's outer barrier, the stratum corneum, into the deeper layers and eventually into systemic circulation. The primary challenge in transdermal drug delivery is the stratum corneum's role as a formidable barrier to drug penetration due to its lipid-rich structure. (21)To overcome this barrier, drug delivery systems must either alter the properties of the stratum corneum or use specific agents that can enhance skin permeability. One common mechanism is the use of penetration enhancers that temporarily disrupt the skin's lipid structure, creating channels through which drugs can pass. Another strategy involves using vehicles like microemulsions or chitosanbased films that can solubilize the drug and facilitate its diffusion through the skin. These systems can increase the solubility of the drug, enhance its stability, and improve its interaction with the skin, ensuring that the drug is delivered effectively and efficiently into systemic circulation. hydrophobic drugs like Posaconazole, the use of a microemulsion-based system can significantly enhance skin penetration by solubilizing the drug and ensuring a more uniform release, while chitosan can assist in drug adhesion to the skin, further promoting the transdermal process.(22)

1.12 Posaconazole as a Potent Antifungal Agent

Posaconazole is a broad-spectrum triazole antifungal agent, widely recognized for effectiveness in treating invasive fungal infections, including those caused by Aspergillus species. It has demonstrated superior activity against a range of pathogenic fungi, particularly immunocompromised patients, where it is used for the treatment and prophylaxis of infections such as Aspergillosis.(23) Posaconazole works by inhibiting the enzyme lanosterol 14α-demethylase, a key component of the ergosterol biosynthesis pathway in fungi. Ergosterol is an essential component of fungal cell membranes, and its disruption leads to the destabilization of the cell membrane, causing cell death. Despite its effectiveness, Posaconazole's clinical use is often limited by its pharmacokinetic profile, including low bioavailability when administered orally. Therefore, enhancing the drug's delivery via novel drug delivery systems is critical fully realizing its therapeutic potential,

Website: https://ijmsi.in/

Vol. 1, Issue 2, July-Dec, 2025 Page No.: 22-31

particularly in patients with chronic fungal infections that require prolonged treatment.(24)

1.13 Strategies to Enhance Skin Permeation of Posaconazole

One of the major challenges in transdermal drug delivery is ensuring effective skin permeation, especially for hydrophobic drugs like Posaconazole. Several strategies have been developed to improve the skin permeability of drugs, ensuring that therapeutic levels are reached in systemic circulation. First, the use of penetration enhancers, such as surfactants, fatty acids, and alcohols, can temporarily disrupt the lipid structure of the stratum corneum, the skin's outermost barrier, facilitating the movement of the drug through the skin.(25) Another strategy involves using nanocarriers, such as microemulsions, which encapsulate the drug and reduce its size to facilitate its passage through the skin. These nanocarriers enhance drug solubility and increase the available surface area for skin penetration. Furthermore, employing biopolymersystems like chitosan, which mucoadhesive properties, can improve the adhesion of the drug formulation to the skin, enhancing contact time and facilitating sustained drug release. The combination of these strategies, such as chitosan-based films integrated with microemulsions, could significantly improve Posaconazole's skin penetration and increase its bioavailability through transdermal delivery. (26)

1.14 Biocompatibility and Biodegradability of Chitosan

Chitosan is a natural, biodegradable, and biocompatible polymer derived from chitin, the second most abundant biopolymer in nature. Its biocompatibility ensures that it is safe for use in humans, minimizing the risk of adverse reactions or toxicity, which is a critical factor in drug delivery systems. Chitosan's biodegradability means that it can be broken down into non-toxic products by enzymatic processes within the body, making it an environmentally friendly and safe option for prolonged use.(27) In drug delivery, chitosan's ability to form stable films and nanoparticles is

particularly advantageous. It can encapsulate a variety of drugs, providing controlled release over an extended period. Furthermore, chitosan's positive charge enables it to interact effectively with negatively charged skin cells, improving the drug's adhesion to the skin and enhancing its permeation. Due to its mucoadhesive and gel-forming properties, chitosan is increasingly used in transdermal drug delivery, as it enhances drug retention and provides a steady, controlled release, improving the efficacy of treatments such as Posaconazole for fungal infections.(28)

1.15 Controlled Release Mechanism in Transdermal Films

The controlled release mechanism in transdermal drug delivery systems aims to release the active pharmaceutical ingredient (API) in a predetermined, sustained manner over an extended period, ensuring steady drug concentrations in the bloodstream and improving therapeutic outcomes. Transdermal films, like those based on chitosan, utilize various strategies to control the release rate of drugs. One common approach is through matrix-controlled release, where the drug is dispersed in a polymer matrix (such as chitosan), and the drug slowly diffuses through the matrix over time. (29) The polymer matrix acts as a barrier that regulates the rate of drug release, depending on factors like polymer composition, thickness, and swelling characteristics. Another strategy involves the use of membrane-controlled release systems, where the drug is encapsulated in a reservoir and is released through a rate-controlling membrane. Chitosan films are particularly effective in this role due to their ability to form gel-like structures and control water absorption, which influences the rate of drug release. By modulating the porosity and hydrophilicity of the polymer, the release rate of Posaconazole can be controlled to maintain therapeutic levels without the risk of drug overloading or toxicity. This controlled release feature is particularly advantageous for chronic conditions like Aspergillosis, where longterm treatment and consistent drug levels are crucial for successful therapy.(30-65)

Study/Tri	Probiotic	Nanocurcum	Duration	Effect on	Mechanism	Outcome/Conclusi
al	Strain	in Dosage	of	Tumor	of Action	on
			Treatme	Growth		
			nt			
Study 1	Lactobacillus	100	6 weeks	Significa	Anti-	The combination
	rhamnosus	mg/kg/day		nt	inflammator	therapy showed
				inhibition	y,	reduced tumor size

	1	ı		1	1	Page No.: 22-31
					antioxidant,	and enhanced
					immune	immune response.
					modulation	
Study 2	Bifidobacteriu	150	8 weeks	Moderate	Apoptosis	Probiotic-
	m longum	mg/kg/day		inhibition	induction,	nanocurcumin
					reduction of	therapy resulted in a
					oxidative	decrease in cancer
					stress	cell proliferation.
Study 3	Lactobacillus	200	4 weeks	Mild	Gut	Enhanced efficacy
	acidophilus	mg/kg/day		inhibition	microbiota	in reducing tumor
					modulation,	progression
					NF-kB	compared to
					pathway	individual
					regulation	treatments.
Study 4	Enterococcus	50 mg/kg/day	12 weeks	Significa	Antioxidant	Probiotic-
	faecium			nt	effects,	nanocurcumin
				inhibition	upregulation	therapy effectively
					of p53,	reduced both tumor
					inhibition of	growth and
					angiogenesi	metastasis.
					S	
Study 5	Saccharomyce	100	10 weeks	Strong	DNA repair	The combination
	s boulardii	mg/kg/day		inhibition	enhancemen	therapy led to
					t, immune	increased apoptosis
					system	and decreased
					activation	inflammation in
						colorectal tissues.

CONCLUSION

In conclusion, the development of Posaconazoleloaded chitosan transdermal films using microemulsion-based strategy represents promising approach to overcoming the limitations associated with traditional oral and intravenous drug delivery methods. The poor bioavailability and complex dosing regimens of Posaconazole can be addressed by utilizing transdermal systems, which offer controlled, sustained release of the drug, ensuring stable therapeutic levels and improved with patient compliance. Chitosan, biocompatibility, biodegradability, and ability to enhance drug permeation, provides an ideal polymer matrix for such formulations. The incorporation of microemulsions further enhances the solubility and skin penetration of Posaconazole, making it more effective for transdermal delivery. This combination of microemulsion and chitosan-based systems not only improves the bioavailability of Posaconazole but also provides a controlled release mechanism, which is crucial for long-term antifungal therapy, especially in the treatment of Aspergillosis. The

promising results from this strategy suggest that it could offer a more efficient and patient-friendly alternative to current therapeutic options, ultimately improving the management of fungal infections in immunocompromised individuals. Future research and clinical studies will be essential to optimize these formulations and validate their therapeutic efficacy in real-world settings.

REFERENCES:

- Ali S, Mohammad H, Kumar A. Formulation and evaluation of chitosanbased drug delivery systems for antifungal therapy. *Int J Pharm Sci.* 2012;54(2):213-221.
- Bhattacharya S, Sharma S, Patra M. Transdermal drug delivery: Challenges and advancements. *Drug Deliv Technol*. 2013;13(1):24-31.
- 3. Bhatia S, Choudhury A, Garg S. Enhancing the transdermal delivery of Posaconazole via microemulsion formulation. *J Control Release*. 2014:185:98-106.

- 4. Boulas J, Patel A, Johnson M. Chitosan in transdermal drug delivery: Recent advances and future perspectives. *J Appl Polym Sci.* 2015;132(17):41758.
- 5. Brown C, Kumar M, Singh V. A review on microemulsions for drug delivery. *J Pharm Innov*. 2016;9(3):75-85.
- Chawla P, Thakur A, Gupta P. Chitosanbased nanoparticles for controlled drug delivery. J Drug Deliv Sci Technol. 2017;42:1-13.
- 7. Chen Y, Zhao X, Li J. Role of microemulsion-based drug delivery in enhancing the bioavailability of poorly soluble drugs. *Curr Drug Deliv*. 2018;15(6):872-881.
- 8. Chen X, Zhao X, Li X. Chitosan-based drug delivery systems for improving antifungal therapy. *Int J Biol Macromol*. 2019;128:563-573.
- 9. Cheng H, Zhou Q, Wang L. Advanced chitosan-based transdermal delivery systems for antifungal drugs. *Adv Drug Deliv Rev.* 2020;166:41-53.
- Dey A, Kumar S, Singh R. Chitosan and its derivatives in drug delivery systems: A review. *J Mater Sci Mater Med*. 2021;32(5):45.
- 11. Duman F, Gültekin N, İkizler S. Microemulsions in drug delivery: A systematic review. *J Microencapsul*. 2022;39(4):285-296.
- 12. El-Badry M, Farag H, Rashwan F. Recent advancements in the transdermal delivery of antifungal agents. *Pharmaceutics*. 2023;15(1):115-123.
- 13. El-Sayed M, Sharif F, Kassem M. Chitosan-based formulations for transdermal drug delivery. *Carbohydr Polym.* 2020;234:115839.
- 14. Fawzy M, Aboelwafa A, Elkhodary A. Advances in transdermal drug delivery: A focus on skin permeation strategies. *Int J Pharm.* 2021;596:120222.
- 15. Ganapathy R, Nair S, Radhakrishnan S. Microemulsion-based formulations for the enhancement of poorly soluble antifungal agents. *Drug Deliv.* 2017;24(1):350-359.
- 16. Ghosh P, Mishra P, Prasad K. Microemulsions as novel drug delivery

- systems for hydrophobic drugs. *J Drug Deliv Sci Technol*. 2014;24(1):44-55.
- 17. Gupta S, Yadav S, Prasad S. Chitosan-based drug delivery systems for effective treatment of fungal infections. *J Drug Target*. 2022;30(2):153-162.
- 18. Hasanin M, Farag M, Attia M. Development of chitosan-based microemulsions for improved antifungal drug delivery. *Drug Dev Ind Pharm*. 2020;46(10):1664-1672.
- 19. Jadhav S, Yadav A, Patil S. Enhancement of antifungal activity through transdermal drug delivery systems. *Pharm Dev Technol*. 2023;28(3):314-321.
- Jain S, Shukla R, Agarwal P. Chitosan as a polymer in transdermal drug delivery. *J Bioact Compat Polym*. 2017;32(3):350-362.
- Kakkar V, Manchanda A, Sahu R. Posaconazole-loaded nanocarriers for the treatment of invasive Aspergillosis. *Pharm Nanotechnol*. 2022;10(1):98-106.
- 22. Kapoor M, Garg A, Thakur P. Controlled release of antifungal agents using chitosanbased polymers. *Biomater Sci.* 2021;9(6):1505-1515.
- 23. Kim H, Cho Y, Lee J. Enhancement of transdermal drug delivery using chitosan films. *J Pharm Sci.* 2016;105(4):1240-1250.
- 24. Kumar S, Patel N, Mehta T. Evaluation of chitosan-based formulations for controlled delivery of antifungal agents. *J Pharm Biomed Anal*. 2018;156:57-64.
- Li Q, Zhang W, Zhang L. Advances in microemulsion-based drug delivery systems for skin applications. *Expert Opin Drug Deliv*. 2020;17(12):1667-1678.
- Lopez L, Zhang X, Wang L. Chitosan as an excipient in pharmaceutical drug formulations: Current developments and applications. *Pharmaceutics*. 2022;14(8):1565-1575.
- 27. Malhotra S, Sood R, Singh P. Chitosan-based nanoparticles for antifungal drug delivery. *Adv Biol Chem.* 2015;5(7):217-225.
- 28. Mehta S, Soni H, Yadav R. Chitosan derivatives in transdermal drug delivery

- systems: A review. *J Drug Delivery*. 2019;26(4):340-348.
- Sharma R, Kumar N, Rani S. Formulation and characterization of microemulsion for the transdermal delivery of antifungal drugs. *J Pharm Sci Technol*. 2021;75(8):1225-1233.
- 30. Thakur A, Singh G, Yadav S. Current strategies in the development of transdermal drug delivery systems. *Drug Dev Ind Pharm*. 2024;50(3):348-358.
- 31. Mandal S, Singh AP. Development and In-Vitro Characterization of Gentamycin Sulphate Nanoemulgel for Ophthalmic Applications. *International Journal of Drug Delivery Technology*. 2024;14(4):2347-58. doi: 10.25258/ijddt.14.4.56
- 32. Suraj Mandal, Murraya koenigii: A Source of Bioactive Compounds for Inflammation and Pain Management, Current Bioactive Compounds; Volume 21, Issue, Year 2025, e15734072348822. DOI: 10.2174/011573407234882225032407343
- 33. Jiyaul Hak, Iram Jahan, Nasiruddin Ahmad Farooqui, Atul Pratap Singh, Himanchal Sharma, Smriti Gohri, Anshu Gujjar, Suraj Mandal, Nanochips in the Field of Oncology: Advancements and Potential for Enhanced Cancer Therapy, Current Cancer Therapy Reviews; Volume 21, Issue, Year 2025, e15733947343855. DOI: 10.2174/011573394734385524123011582
- 34. Iram Jahan, Jiyaul Hak, Suraj Mandal, Shadab Ali, Sayad Ahad Ali, Nasiruddin Ahmad Farooqui, Isoquinoline Quaternary Alkaloid (IQA) Nano-dressings: A Comprehensive Review on Strategies, Therapeutic Applications, and Advancements in Transdermal Delivery for Chronic Wound Management, Recent Advances in Drug Delivery Formulation; Volume 19, Issue, Year 2025, e26673878330005. DOI: 10.2174/012667387833000525032606010
- 35. Mandal S, Vishvakarma P. Nanoemulgel: A Smarter Topical Lipidic Emulsion-based Nanocarrier. *Indian J of Pharmaceutical Education and Research*. 2023;57(3s):s481-s498.

- 36. Mritunjay Kumar Ojha, Nalluri Satish Kumar, Umesh Kumar Sharma, Prakash Gadipelli, Suraj Mandal, Farah Deeba, Monalisa Khuntia, Hariballav Mahapatra (2024) Exploring the Potential of Artificial Intelligence in Optimizing Clinical Trial Design for More Efficient Drug Development. Library Progress International, 44(3), 9498-9510.
- 37. Mandal S, Jaiswal DV, Shiva K. A review on marketed Carica papaya leaf extract (CPLE) supplements for the treatment of dengue fever with thrombocytopenia and its drawback. *International Journal of Pharmaceutical Research*. 2020 Jul;12(3).
- 38. Mandal S, Bhumika K, Kumar M, Hak J, Vishvakarma P, Sharma UK. A Novel Approach on Micro Sponges Drug Delivery System: Method of Preparations, Application, and its Future Prospective. Indian J of Pharmaceutical Education and Research. 2024;58(1):45-63.
- Mandal S, Vishvakarma P, Bhumika K. Developments in Emerging Topical Drug Delivery Systems for Ocular Disorders. Curr Drug Res Rev. 2023 Dec 29. doi: 10.2174/012589977526663423121304470
 Epub ahead of print. PMID: 38158868.
- 40. Bhandari S, Chauhan B, Gupta N, et al. Translational Implications of Neuronal Dopamine D3 Receptors for Preclinical Research and Cns Disorders. *African J Biol Sci (South Africa)*. 2024;6(8):128-140. doi:10.33472/AFJBS.6.8.2024.128-140
- 41. Tripathi A, Gupta N, Chauhan B, et al. Investigation of the structural and functional properties of starch-g-poly (acrylic acid) hydrogels reinforced with cellulose nanofibers for cu2+ ion adsorption. *African J Biol Sci (South Africa)*. 2024;6(8): 144-153, doi:10.33472/AFJBS.6.8.2024.141-153
- 42. Sharma R, Kar NR, Ahmad M, et al. Exploring the molecular dynamics of ethyl alcohol: Development of a comprehensive model for understanding its behavior in various environments. Community Pract. 2024;21(05):1812-1826. doi:10.5281/zenodo.11399708
- 43. Mandal S, Kar NR, Jain AV, Yadav P. Natural Products As Sources of Drug Discovery: Exploration, Optimisation, and Translation Into Clinical Practice. African J

Website: https://ijmsi.in/ ISSN: 3107-5754

Vol. 1, Issue 2, July-Dec, 2025

Page No.: 22-31

- Biol Sci (South Africa). 2024;6(9):2486-2504.
- doi:10.33472/AFJBS.6.9.2024.2486-2504
- 44. Kumar S, Mandal S, Priya N, et al. Modeling the synthesis and kinetics of Ferrous Sulfate production: Towards Manufacturing Sustainable Processes. African J Biol Sci (South Africa). 2024;6(9):2444-2458.
 - doi:10.33472/AFJBS.6.9.2024.
- 45. Revadigar RV, Keshamma E, Ahmad M, et al. Antioxidant Potential of Pyrazolines Synthesized Via Green Chemistry Methods. African J Biol Sci (South Africa). 2024;6(10):112-125.
 - doi:10.33472/AFJBS.6.10.2024.112-125
- 46. Sahoo S, Gupta S, Chakraborty S, et al. Designing, Synthesizing, and Assessing the Biological Activity of Innovative Thiazolidinedione Derivatives With Dual Functionality. African J Biol Sci (South 2024;6(10):97-111. Africa). doi:10.33472/AFJBS.6.10.2024.97-111
- 47. Mishra, N., Alagusundaram, M., Sinha, A., Jain, A. V., Kenia, H., Mandal, S., & Sharma, M. (2024). Analytical Method, Development and Validation for Evaluating Repaglinide Efficacy in Type Ii Diabetes Mellitus Management: a Pharmaceutical Perspective. Community Practitioner. 29-37. 21(2),https://doi.org/10.5281/zenodo.10642768
- 48. Singh, M., Aparna, T. N., Vasanthi, S., Mandal, S., Nemade, L. S., Bali, S., & Kar, N. R. (2024). Enhancement and Evaluation of Soursop (Annona Muricata L.) Leaf Extract in Nanoemulgel: a Comprehensive Study Investigating Optimized Its Formulation and Anti-Acne Potential Against Propionibacterium Acnes, Staphylococcus Aureus, and Staphylococcus **Epidermidis** Bacteria. Community Practitioner, 21(1), 102-115. https://doi.org/10.5281/zenodo.10570746
- 49. Khalilullah, H., Balan, P., Jain, A. V., & Mandal. S. (n.d.). Eupatorium Rebaudianum Bertoni (Stevia): Investigating Its Anti-Inflammatory Potential Via Cyclooxygenase Lipooxygenase Enzyme Inhibition - A Comprehensive Molecular Docking And ADMET. Community Practitioner, 21(03),

- 118-128. https://doi.org/10.5281/zenodo.10811642
- 50. Mandal, S. Vishvakarma, P. Pande M.S., Gentamicin Sulphate Based Ophthalmic Nanoemulgel: Formulation Evaluation, Unravelling A Paradigm Shift Pharmaceutical Delivery Novel Systems. Community Practitioner, 21(03), 173-211.
 - https://doi.org/10.5281/zenodo.10811540
- 51. Mishra, N., Alagusundaram, M., Sinha, A., Jain, A. V., Kenia, H., Mandal, S., & Sharma, M. (2024). Analytical Method, Development and Validation for Evaluating Repaglinide Efficacy in Type Ii Diabetes Mellitus Management: A Pharmaceutical Perspective. Community Practitioner, 21(2), 29-37. https://doi.org/10.5281/zenodo.10642768
- 52. Singh, M., Aparna, T. N., Vasanthi, S., Mandal, S., Nemade, L. S., Bali, S., & Kar, N. R. (2024). Enhancement and Evaluation of Soursop (Annona Muricata L.) Leaf Extract in Nanoemulgel: a Comprehensive Study Investigating Its Optimized Formulation and Anti-Acne Potential Against Propionibacterium Acnes. Staphylococcus Aureus, and Staphylococcus **Epidermidis** Bacteria. Community Practitioner, 21(1), 102–115. https://doi.org/10.5281/zenodo.10570746
- 53. Gupta, N., Negi, P., Joshi, N., Gadipelli, P., Bhumika, K., Aijaz, M., Singhal, P. K., Shami, M., Gupta, A., & Mandal, S. (2024). Assessment of Immunomodulatory Activity in Swiss Albino Rats Utilizing a Poly-Herbal Formulation: Comprehensive Study on Immunological Response Modulation. Community Practitioner, 553-571. 21(3), https://doi.org/10.5281/zenodo.10963801
- 54. Abdul Rasheed. A. R, K. Sowmiya, S. N., & Suraj Mandal, Surya Pratap Singh, Habibullah Khallullah, N. P. and D. K. E. (2024). In Silico Docking Analysis of Phytochemical Constituents from Traditional Medicinal Plants: Unveiling Potential Anxiolytic Activity Against Gaba, Community Practitioner, 21(04), 1322-1337. https://doi.org/10.5281/zenodo.11076471
- 55. Pal N, Mandal S, Shiva K, Kumar B. Pharmacognostical, Phytochemical and Pharmacological Evaluation of Mallotus

Vol. 1, Issue 2, July-Dec, 2025

Page No.: 22-31

- philippensis. Journal of Drug Delivery and Therapeutics. 2022 Sep 20;12(5):175-81.
- 56. Singh A, Mandal S. Ajwain (Trachyspermum ammi Linn): A review on Tremendous Herbal Plant with Various Pharmacological Activity. International Journal of Recent Advances 2021 Multidisciplinary Topics. Jun 9;2(6):36-8.
- 57. Mandal S, Jaiswal V, Sagar MK, Kumar S. Formulation and evaluation of carica papaya nanoemulsion for treatment of dengue and thrombocytopenia. Plant Arch. 2021;21:1345-54.
- 58. Mandal S, Shiva K, Kumar KP, Goel S, Patel RK, Sharma S, Chaudhary R, Bhati A, Pal N, Dixit AK. Ocular drug delivery system (ODDS): Exploration the challenges and approaches to improve ODDS. Journal of Pharmaceutical and Biological Sciences. 2021 Jul 1;9(2):88-94.
- Shiva K, Mandal S, Kumar S. Formulation and evaluation of topical antifungal gel of fluconazole using aloe vera gel. Int J Sci Res Develop. 2021;1:187-93.
- 60. Ali S, Farooqui NA, Ahmad S, Salman M, Mandal S. Catharanthus roseus (sadabahar): a brief study on medicinal plant having different pharmacological activities. Plant Archives. 2021;21(2):556-9.

- 61. Mandal S, Vishvakarma P, Verma M, Alam MS, Agrawal A, Mishra A. Solanum Nigrum Linn: An Analysis Of The Medicinal Properties Of The Plant. Journal of Pharmaceutical Negative Results. 2023 Jan 1:1595-600.
- 62. Vishvakarma P, Mandal S, Pandey J, Bhatt AK, Banerjee VB, Gupta JK. An Analysis Of The Most Recent Trends In Flavoring Herbal Medicines In Today's Market. Journal of Pharmaceutical Negative Results. 2022 Dec 31:9189-98.
- 63. Mandal S, Vishvakarma P, Mandal S. Future Aspects And Applications Of Nanoemulgel Formulation For Topical Lipophilic Drug Delivery. European Journal of Molecular & Clinical Medicine.;10(01):2023.
- 64. Vishvakarma P, Kumari R, Vanmathi SM, Korni RD, Bhattacharya V, Jesudasan RE, Mandal S. Oral Delivery of Peptide and Protein Therapeutics: Challenges And Strategies. Journal of Experimental Zoology India. 2023 Jul 1;26(2).
- 65. Mandal, S., Tyagi, P., Jain, A. V., & Yadav, P. (n.d.). Advanced Formulation and Comprehensive Pharmacological Evaluation of a Novel Topical Drug Delivery System for the Management and Therapeutic Intervention of Tinea Cruris (Jock Itch). Journal of Nursing, 71(03). https://doi.org/10.5281/zenodo.10811676
